All finance Calculators
Online Investment Calculator - Future Value Projection Tool

Online Investment Calculator - Future Value Projection Tool

Calculate the future value of your investments with recurring contributions. Use our online investment calculator to project how your initial amount and ongoing deposits grow over time with compound interest.

Options

Investment

Interest

Principal

Contributions

0 yr

5 yr

10 yr

15 yr

BEGINNING BALANCE ($) INTEREST ($) PRINCIPAL ($) ENDING BALANCE ($)
1 23,383.75 1,300.67 2,400.00 23,700.67
2 27,293.12 1,528.92 2,400.00 27,629.59
3 31,443.61 1,771.24 2,400.00 31,800.83
4 35,850.10 2,028.52 2,400.00 36,229.35
5 40,528.37 2,301.66 2,400.00 40,931.01
6 45,495.18 2,591.65 2,400.00 45,922.66
7 50,768.34 2,899.52 2,400.00 51,222.18
8 56,366.73 3,226.38 2,400.00 56,848.56
9 62,310.42 3,573.41 2,400.00 62,821.97
10 68,620.70 3,941.83 2,400.00 69,163.80
11 75,320.19 4,332.98 2,400.00 75,896.79
12 82,432.88 4,748.26 2,400.00 83,045.05
13 89,984.28 5,189.15 2,400.00 90,634.20
14 98,001.42 5,657.23 2,400.00 98,691.43
15 106,513.05 6,154.18 2,400.00 107,245.61
BEGINNING BALANCE ($) INTEREST ($) PRINCIPAL ($) ENDING BALANCE ($)
1 20,000.00 100.00 200.00 20,300.00
2 20,300.00 101.50 200.00 20,601.50
3 20,601.50 103.01 200.00 20,904.51
4 20,904.51 104.52 200.00 21,209.03
5 21,209.03 106.05 200.00 21,515.08
6 21,515.08 107.58 200.00 21,822.65
7 21,822.65 109.11 200.00 22,131.76
8 22,131.76 110.66 200.00 22,442.42
9 22,442.42 112.21 200.00 22,754.63
10 22,754.63 113.77 200.00 23,068.41
11 23,068.41 115.34 200.00 23,383.75
12 23,383.75 116.92 200.00 23,700.67
#1
13 23,700.67 118.50 200.00 24,019.17
14 24,019.17 120.10 200.00 24,339.27
15 24,339.27 121.70 200.00 24,660.96
16 24,660.96 123.30 200.00 24,984.27
17 24,984.27 124.92 200.00 25,309.19
18 25,309.19 126.55 200.00 25,635.74
19 25,635.74 128.18 200.00 25,963.92
20 25,963.92 129.82 200.00 26,293.73
21 26,293.73 131.47 200.00 26,625.20
22 26,625.20 133.13 200.00 26,958.33
23 26,958.33 134.79 200.00 27,293.12
24 27,293.12 136.47 200.00 27,629.59
#2
25 27,629.59 138.15 200.00 27,967.73
26 27,967.73 139.84 200.00 28,307.57
27 28,307.57 141.54 200.00 28,649.11
28 28,649.11 143.25 200.00 28,992.36
29 28,992.36 144.96 200.00 29,337.32
30 29,337.32 146.69 200.00 29,684.00
31 29,684.00 148.42 200.00 30,032.42
32 30,032.42 150.16 200.00 30,382.59
33 30,382.59 151.91 200.00 30,734.50
34 30,734.50 153.67 200.00 31,088.17
35 31,088.17 155.44 200.00 31,443.61
36 31,443.61 157.22 200.00 31,800.83
#3
37 31,800.83 159.00 200.00 32,159.84
38 32,159.84 160.80 200.00 32,520.63
39 32,520.63 162.60 200.00 32,883.24
40 32,883.24 164.42 200.00 33,247.65
41 33,247.65 166.24 200.00 33,613.89
42 33,613.89 168.07 200.00 33,981.96
43 33,981.96 169.91 200.00 34,351.87
44 34,351.87 171.76 200.00 34,723.63
45 34,723.63 173.62 200.00 35,097.25
46 35,097.25 175.49 200.00 35,472.74
47 35,472.74 177.36 200.00 35,850.10
48 35,850.10 179.25 200.00 36,229.35
#4
49 36,229.35 181.15 200.00 36,610.50
50 36,610.50 183.05 200.00 36,993.55
51 36,993.55 184.97 200.00 37,378.52
52 37,378.52 186.89 200.00 37,765.41
53 37,765.41 188.83 200.00 38,154.24
54 38,154.24 190.77 200.00 38,545.01
55 38,545.01 192.73 200.00 38,937.73
56 38,937.73 194.69 200.00 39,332.42
57 39,332.42 196.66 200.00 39,729.08
58 39,729.08 198.65 200.00 40,127.73
59 40,127.73 200.64 200.00 40,528.37
60 40,528.37 202.64 200.00 40,931.01
#5
61 40,931.01 204.66 200.00 41,335.66
62 41,335.66 206.68 200.00 41,742.34
63 41,742.34 208.71 200.00 42,151.05
64 42,151.05 210.76 200.00 42,561.81
65 42,561.81 212.81 200.00 42,974.62
66 42,974.62 214.87 200.00 43,389.49
67 43,389.49 216.95 200.00 43,806.44
68 43,806.44 219.03 200.00 44,225.47
69 44,225.47 221.13 200.00 44,646.60
70 44,646.60 223.23 200.00 45,069.83
71 45,069.83 225.35 200.00 45,495.18
72 45,495.18 227.48 200.00 45,922.66
#6
73 45,922.66 229.61 200.00 46,352.27
74 46,352.27 231.76 200.00 46,784.03
75 46,784.03 233.92 200.00 47,217.95
76 47,217.95 236.09 200.00 47,654.04
77 47,654.04 238.27 200.00 48,092.31
78 48,092.31 240.46 200.00 48,532.77
79 48,532.77 242.66 200.00 48,975.44
80 48,975.44 244.88 200.00 49,420.31
81 49,420.31 247.10 200.00 49,867.42
82 49,867.42 249.34 200.00 50,316.75
83 50,316.75 251.58 200.00 50,768.34
84 50,768.34 253.84 200.00 51,222.18
#7
85 51,222.18 256.11 200.00 51,678.29
86 51,678.29 258.39 200.00 52,136.68
87 52,136.68 260.68 200.00 52,597.36
88 52,597.36 262.99 200.00 53,060.35
89 53,060.35 265.30 200.00 53,525.65
90 53,525.65 267.63 200.00 53,993.28
91 53,993.28 269.97 200.00 54,463.25
92 54,463.25 272.32 200.00 54,935.56
93 54,935.56 274.68 200.00 55,410.24
94 55,410.24 277.05 200.00 55,887.29
95 55,887.29 279.44 200.00 56,366.73
96 56,366.73 281.83 200.00 56,848.56
#8
97 56,848.56 284.24 200.00 57,332.81
98 57,332.81 286.66 200.00 57,819.47
99 57,819.47 289.10 200.00 58,308.57
100 58,308.57 291.54 200.00 58,800.11
101 58,800.11 294.00 200.00 59,294.11
102 59,294.11 296.47 200.00 59,790.58
103 59,790.58 298.95 200.00 60,289.53
104 60,289.53 301.45 200.00 60,790.98
105 60,790.98 303.95 200.00 61,294.94
106 61,294.94 306.47 200.00 61,801.41
107 61,801.41 309.01 200.00 62,310.42
108 62,310.42 311.55 200.00 62,821.97
#9
109 62,821.97 314.11 200.00 63,336.08
110 63,336.08 316.68 200.00 63,852.76
111 63,852.76 319.26 200.00 64,372.02
112 64,372.02 321.86 200.00 64,893.88
113 64,893.88 324.47 200.00 65,418.35
114 65,418.35 327.09 200.00 65,945.45
115 65,945.45 329.73 200.00 66,475.17
116 66,475.17 332.38 200.00 67,007.55
117 67,007.55 335.04 200.00 67,542.59
118 67,542.59 337.71 200.00 68,080.30
119 68,080.30 340.40 200.00 68,620.70
120 68,620.70 343.10 200.00 69,163.80
#10
121 69,163.80 345.82 200.00 69,709.62
122 69,709.62 348.55 200.00 70,258.17
123 70,258.17 351.29 200.00 70,809.46
124 70,809.46 354.05 200.00 71,363.51
125 71,363.51 356.82 200.00 71,920.33
126 71,920.33 359.60 200.00 72,479.93
127 72,479.93 362.40 200.00 73,042.33
128 73,042.33 365.21 200.00 73,607.54
129 73,607.54 368.04 200.00 74,175.58
130 74,175.58 370.88 200.00 74,746.46
131 74,746.46 373.73 200.00 75,320.19
132 75,320.19 376.60 200.00 75,896.79
#11
133 75,896.79 379.48 200.00 76,476.27
134 76,476.27 382.38 200.00 77,058.65
135 77,058.65 385.29 200.00 77,643.95
136 77,643.95 388.22 200.00 78,232.17
137 78,232.17 391.16 200.00 78,823.33
138 78,823.33 394.12 200.00 79,417.44
139 79,417.44 397.09 200.00 80,014.53
140 80,014.53 400.07 200.00 80,614.60
141 80,614.60 403.07 200.00 81,217.68
142 81,217.68 406.09 200.00 81,823.77
143 81,823.77 409.12 200.00 82,432.88
144 82,432.88 412.16 200.00 83,045.05
#12
145 83,045.05 415.23 200.00 83,660.27
146 83,660.27 418.30 200.00 84,278.58
147 84,278.58 421.39 200.00 84,899.97
148 84,899.97 424.50 200.00 85,524.47
149 85,524.47 427.62 200.00 86,152.09
150 86,152.09 430.76 200.00 86,782.85
151 86,782.85 433.91 200.00 87,416.77
152 87,416.77 437.08 200.00 88,053.85
153 88,053.85 440.27 200.00 88,694.12
154 88,694.12 443.47 200.00 89,337.59
155 89,337.59 446.69 200.00 89,984.28
156 89,984.28 449.92 200.00 90,634.20
#13
157 90,634.20 453.17 200.00 91,287.37
158 91,287.37 456.44 200.00 91,943.81
159 91,943.81 459.72 200.00 92,603.53
160 92,603.53 463.02 200.00 93,266.54
161 93,266.54 466.33 200.00 93,932.88
162 93,932.88 469.66 200.00 94,602.54
163 94,602.54 473.01 200.00 95,275.55
164 95,275.55 476.38 200.00 95,951.93
165 95,951.93 479.76 200.00 96,631.69
166 96,631.69 483.16 200.00 97,314.85
167 97,314.85 486.57 200.00 98,001.42
168 98,001.42 490.01 200.00 98,691.43
#14
169 98,691.43 493.46 200.00 99,384.89
170 99,384.89 496.92 200.00 100,081.81
171 100,081.81 500.41 200.00 100,782.22
172 100,782.22 503.91 200.00 101,486.13
173 101,486.13 507.43 200.00 102,193.56
174 102,193.56 510.97 200.00 102,904.53
175 102,904.53 514.52 200.00 103,619.05
176 103,619.05 518.10 200.00 104,337.15
177 104,337.15 521.69 200.00 105,058.83
178 105,058.83 525.29 200.00 105,784.13
179 105,784.13 528.92 200.00 106,513.05
180 106,513.05 532.57 200.00 107,245.61
#15

Oops! Something went wrong. Please try again.

What Is This Tool?

This investment calculator helps you estimate the future value of your investment by considering an initial lump sum, recurring contributions, and an expected rate of return over a specified period. It uses standard compound interest formulas to provide reliable long-term financial projections.

How to Use This Tool?

  • Enter your initial investment amount (P).
  • Specify your recurring contribution amount (C), either monthly or yearly.
  • Input the expected annual rate of return and divide by the number of compounding periods to get rate per period (r).
  • Set the total number of periods (t), calculated from years multiplied by compounding frequency.
  • Click the calculate button to view the projected future value (A) of your investment.

Key Features

  • Calculates future value based on initial investment and recurring contributions
  • Incorporates the rate of return per compounding period for accuracy
  • Supports flexibility in input periods and contribution frequencies
  • Utilizes standard compound interest and recurring deposit formulas
  • Provides precise floating-point calculations for financial forecasting

Examples

  • If you invest $5,000 initially (P), contribute $1,200 annually (C), with an 8% annual return (r) over 15 years (t), the calculator estimates your investment growth as follows: The initial $5,000 grows to approximately $15,866.50, and your contributions compound to about $33,720, resulting in a total future value near $49,586.50.

Common Use Cases

  • Planning retirement savings with regular annual or monthly deposits
  • Estimating future education funds using recurring contributions
  • Projecting wealth accumulation from combined lump sums and periodic investments
  • Assisting financial planners in creating long-term investment forecasts
  • Helping individual investors visualize growth of their investment portfolios

Tips & Best Practices

  • Ensure accurate input of the rate of return and compounding frequency for precise results
  • Use consistent periods for contributions and compounding calculations
  • Update contributions and rates regularly to reflect changing financial circumstances
  • Consider using conservative return rates to account for market volatility
  • Review results periodically to adjust your saving strategy effectively

Limitations

  • Assumes constant rates of return and fixed contribution amounts throughout the investment period
  • Does not account for market fluctuations or unexpected changes in investment performance
  • May not capture fees, taxes, or other costs associated with investments
  • Results are projections and could differ from actual future investment values

Frequently Asked Questions

What does the initial investment amount (P) represent?
P is the lump sum amount you invest at the beginning, which grows over time with compound interest.

How are recurring contributions (C) factored into the calculation?
Recurring contributions are accounted for by adding the accumulated value of deposits made each period, compounded at the rate of return.

Can the calculator handle different compounding frequencies?
Yes, the rate of return per period (r) and total periods (t) should be adjusted according to your compounding frequency, such as yearly, monthly, or quarterly.

Does this calculator consider changes in the rate of return over time?
No, it assumes a constant rate of return throughout the investment period.

Key Terminology

Initial Investment (P)
The starting lump sum amount invested that grows over time with compound interest.
Recurring Contribution (C)
Regular deposits made periodically that add to the investment and earn compound interest.
Rate of Return (r)
The return earned each compounding period, calculated as the annual rate divided by the number of compounding periods.
Total Number of Periods (t)
The overall count of compounding intervals during the investment timeframe, typically years multiplied by compounding frequency.
Future Value (A)
The projected total value of the investment at the end of the investment duration, including principal and accumulated contributions.

Quick Knowledge Check

In the formula \(A = P(1+r)^t + C \\times \\frac{(1+r)^t - 1}{r}\), what does the term \(C \\times \\frac{(1+r)^t - 1}{r}\) represent?